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Abstract—The “‘embedding technique”, developed by Boley is applied to a hollow cylinder with an ablating
inner boundary to obtain a general starting and short time solution. Numerical results are obtained giving the
motion of the ablating boundary and the temperature distribution in the vicinity of the moving boundary for
ice and lead.

1. INTRODUCTION

A cLass of heat conduction problems in which the medium changes its phase at a specific
temperature with emission or absorption of heat has gained considerable importance
in the last decade.

The first exact solution to this class of problems, employing the similarity method,
was given in 1860 {1]. Springer and Olson [2, 3] obtained numerical solutions for problems
involving axisymmetric solidification and melting of a medium bounded by two con-
centric cylinders of finite length.

Boley [4] introduced the “‘embedding technique” for such problems. The actual body,
in which the temperature distribution and the position of the transition region between
the two phases have to be determined, is considered as a part of a fictitious body which
envelops it completely. The heat flux at the surface of the fictitious body is determined from
the specified conditions on the transition surface of the actual body. This allows one to
assign a simple geometry to the fictitious body, even though the actual body may be quite
complicated, and simplifies the formulation of the problem. This method was also used to
solve some problems with moving boundaries for finite regions, such as slabs subjected
to various boundary conditions [5, 6]. Reference [5] has a comprehensive bibliography
for such problems.

In the present paper the embedding technique, which was used by Boley [6] to obtain
a starting solution for a finite slab, is applied to a hollow cylinder with an ablating inner
surface, in order to obtain the starting solution. An example for such a problem is a solid-
fuel rocket where the fuel core is burning from the inside out. The solution is given for
the axisymmetric case with a constant heat input up to the melting time at the inner
boundary, the outer boundary being kept at ambient temperature. The problem is formu-
lated in terms of dimensionless parameters, so that the temperature distribution and the
position of the moving boundary of the cylinder can be obtained for a large class of
materials.
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2. THE FORMULATION OF THE PROBLEM

Consider a hollow cylinder (Fig. 1) of inner radius a and outer radius b, subject to the
boundary conditions

—k

T Q, at 0<tr<t

= < r =q m
a2 - ()
T,=0 at r=5pb 0«<t<t,

where k is a constant. T(r, t) is the temperature (before melting) and @, is the prescribed
heat input. Equation (1) together with a prescribed initial temperature (here taken as
zero), and with the heat conduction equation

ot e éT,
Kl S+ S =" a<r<
(8r2+r8r)b o asrsh 2)
0<t<ry,

give a complete formulation of the problem up to the time of melting.
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FI1G. 1. Cross section of a hollow cylinder with a moving inner boundary.
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Let ¢, be the time at which the inner surface temperature reaches the melting tem-
perature T,,, so that
Ta, tw) = T,

In terms of dimensionless quantities, the solution of equation (2) can be written as

o 1 J3(A:B) e
s [Jo(LR) ¥(4;) — NATE Kaa2(1+y)

0 ': ln +7 Z /1 [Jz('lz) J()(/l ﬁ)][ O( i ) 1('11) Jl(i.) o(i,R)]C (3)
where

T, r b K ot
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and Jo, J;, Y, Y; are Bessel functions of the first and second order and first and second
kind respectively and A; are the roots of the equation

J 1) Yo(AiB) — Jo(4:f) Yi(A:) = 0

Equation (3) can be expanded in a power series which is convenient for use in the
computations after melting:

ool

0= Zamy(R 1yt (4)
n=0i=
where
4 1 a0,
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y=0
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Ky ¢ J5(A 2
a3y = — 4y "d Z o ﬁ) Jfe Kt

= =30

a3, =0

_ 4p K;; c JO(/L ﬁ) -4 — KqA?
a 33— o ‘4‘”4‘—“—*7‘ t

3 m i=1 LJZ(;L JO(’t B)]

For t > ¢, the temperature distribution (denoted as T) must satisfy the equation

subject to the conditions

Tla+s(t),t) = T,

T ds
—kkf l— o= s(t
p» =Q,—p i ro=a+s(t) ()

Tb,t)=0

T(r, ty) = T(r, 1,).

Where s(t) is the thickness of the ablating region and p and [ are the density and the latent
heat respectively. The actual cylinder of varying thickness is replaced by an equivalent
one of the constant thickness (b —a), as shown in Fig. 2.

The heat input on the equivalent cylinder at r = a is [Q*(t)+ Q'(¢)] where Q*(¢) is the
analytic continuation of the actual heat input Q,, before melting, into the region t > ¢,
while Q'(2) is an unknown fictitious function of time. The temperature T* due to the given
Q*(¢) is simply the analytic continuation of the temperature T, before melting. The tempera-
ture T’ due to the unknown function Q'(f) can be obtained in the form of a Duhamel
integral :

T(r, t) = fr o't— r)%(r, 1) dr
o )

where Ty, is the temperature distribution in an infinite region with zero initial temperature,
bounded internally by a circular cylinder with radius r = a, [1] and is applicable in this
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F1G. 2. Equivalent problems for the case of instantaneous removal of the melted portion.

case; as only a starting solution is sought therefore the effect of the outside boundary is

negligible.

2[Kat\* r—a
Tor 1) = o =24 Jierfel —2
ol B k( . ) {1 erfc?,(Kt)f

for small values of Kt/a?.
The temperature distribution in the body after melting is

T=T4+T*

(3r +a)

(Kt)ti? erfcz(K ¥ } N
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Substitution of equation (8) into the first two of equations (6) gives the following two
simultaneous integro-differential equations for the two unknowns s(t) and Q'(1):

-
2(Ka\t e 41 4K(t—t,)| (BF+a) , (F-a) |
k( r ) fo Q=1 2/n (1—tn)? 16ar K erfC[K(t—t;ﬁgth ®)
+T, Y Y ay(R-1y" =T,
n=0:=0
exp(_i_ff )
L F-a 4K@—1,)][ 3 1
2AKa) L ) 4/n(t—1,)} = \Za’f”K(zq,,,_})
(F+a) ., (F—a)
% a ke [ & 1o
+k—;rn Z Zam}’(R }n P "‘Q*‘f‘Pla“‘
n=01i=0

where ¥ = a+ s(t) and s(t,,) = 0.

If the problem is confined to small times, y « 1, i.e. a starting solution, then the second
term of equation (9) in the brackets is small as compared to the first term and therefore can
be neglected.

This system of integro-differential equations can be written in terms of dimensionless
parameters and simplified under the following assumptions:

(a) The temperature distribution is continuous at the transition surface; therefore
(ZQ() = l.

(b} The dimensionless position &(y) of the moving boundary (&(y) = [s(t)/a]) is less
than unity. Thus the binomial expansion can be used. Multiplication of the double series
by the terms which appear in front of the summation signs, after regrouping, yields the
final form of this pair of integro-differential equations:

52()*);’4de¥ e n
f eu- ")e = =% T buer (1)
n? n=1i=0
1 14 Y Q'ly—n) e‘éz(y)ml(.m 3 fy Q*(y_,?) I3
= dn+-— 1-2 i d
WeK) T+ 80 s 0o A g Kl =20 | =g ertes e

(12)

o n d
____Z 2 CaiV fn 1+ _E-Y_)
n=0i= y
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with £(0) = 0 where

s(t) pla
o) = 1= ot
boo = ago
byo = ajo+(aco—%) by, =ay, b33 = as3
byo = azo+3ae by = a1 +3ay; baz = as;
bio = azo+%ax0 biy = a3, +3as, bys = az;+34a;,
and
Coo = Mdoo = — Qs
Cio = 2mase Cyp = Mdy,
C0 = 3ma30—§\/—000 €21 = 2masz, — \3/ Ca2 = M3z
€30 = 4'"440—*8'\%020“?@“\7;“10 C31 = 3mag, — j az; + \3/ dgy

Caz = 2m42—8—azz C33 = M3,
Jr

There are two unknowns in equations (11) and (12), namely Q'(y)/Q, and &(y), the latter
being subject to the condition £(0) = 0.

These equations are solved for the case of the starting solution, which implies that
the leading term of the solution for &(y) will be obtained for the case of an arbitrary pre-
scribed Q*(y) after melting. Equation (12) shows that four terms give a contribution to the
rate d¢/dy at which the melting front advances, that is

Sy) =& +E6+86+ 8, (13)
where
d¢, o*
—d? [Qo+ oo] (14)
déZ _1 - - -
dy = qnzl ’Z cuiy's (15)
exp( & )
a6 1 1 ST A ) aKan) (16)
&y~ Tq2JmK) I+ &I ) Qo I
d§4 13 Qy—mn s
T Kd[l 2£,] f erfc{2 \/(Ka??)} dn. an

The solution of (14) is

1 ¥ Q*
mwaL&fm%n (18)
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If Q*(v) is equal to Q, after the melting then equation (14) yields the trivial solution
&y = 0.
In order to evaluate &,(y), it is assumed that the leading non-zero term of the summa-
tion corresponds to some specific values of n and i, so that

sy _ 1 e
d}’ - g Cnil €2 .
After the integration
i+ 1
cions v .
gl n+1i — . +C
i+1

where C is an integration constant. The condition &0) = 0 can be satisfied only if
i—n+1 > 0, and since the range of indices in the double summation (15) requires 0 < i < n
the only possibility which satisfies this assumption is n—i = 0.

Thus

o < + 3
Sy = = oyt (19

where n is the smallest integer for which ¢,, # 0. The evaluation of {3(y) and {4(y) requires
a knowledge of Q'(y) which must be obtained from the other interface condition (11}.

2
ol
v O n=11i=

where the use of subscripts as in &; 4, stands for either 63 or &,. In order to obtain ¢;
it is assumed that the leading non-zero term on the right hand side of equation (20) cor-
responds to some specific values of n and i. The resulting integral in the equation is simpli-
fied for short times in Appendix of Ref. [6] (A.11) with n = } yielding

- = RV Ikl 9
o Qo buiy' S5 4 (20

provided that the condition (A.4) of Ref. [6] holds, equation (21) is a special case of Abel's
integral equation with the solution given in Ref. [7]. Thus

() v a
S NN
Qo T
Equation (16) can be simplified for short times by means of f:quatmn (A1) of Ref. (6.
with n = %
Therefore
Q' .
(14 &4ty NE {213}
Qo —qi 3l

Substitution of (23) into (22) and ignoring the value of%éj(y) with respect 10 unity gives
the following equation for &;(y):

dy

bni { i n—i 5
G=—1 w=—nlSu—-m"" "= (24}
ng n
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Substitution of u = 5/y and du = dn/y with the aid of equation (A.6a) and Ref. [6] and
using the following requirements: 1 —n+i > 0;0 < n—i < n, which yield n = i, the final
form of this equation with the aid of equations {A.12a) and (A.13) of Ref. [6] leads to the
desired result
b (n)?
— _322n+ N7 > 1
¢3(y) g Gne )] nz (25)

where n is the lowest integer for which b, # 0.

Comparison of equations (17) and (20} suggests that the complementary error func-
tion in equation (17) can be taken as unity. Substitution of Q'(y)/Q, from equation (22)
into equation {17) gives

dég 13 (7 buf 4]
T gKd-28) [ R{d(y_m | omn-0r-n-00 g} (26)

The following transformation with its limits of integration aids in the integration of this
equation:

{—p=V —dn =dV n=y V=20
=20 V =y

Introducing a new parameter u = y/n produces an equation similar to equation (24).
Then a similar procedure to the one used on equation (24) leads to the following result:

—b 13 22"“(?1!)2 N
- m * °K n+ 2 7
e T G P YA @)

wheren> 1,y < L
Q'(y)/Q, is computed from equation {22} subject to the condition n = i.

2w b, d f Y dy ,
- - — - e 28
0. 7 dy O(y n)n‘ (28)
If n = 1 then
’ b .
QU _ _obu (29)
Qo s
The final temperature distribution in the body is
0=0+0,=0+0* 30)
where
w7 ) |
= ———y|i?erfc{—r—r 31
R? 2/ (Kap) D
for n = 1.

The solution 8(r, y} is valid for

I»>y>0 and R>1+&)y)
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where {(y) can be obtained from equation (13). Thus the starting solution of the problem
is obtained.

To extend the range of validity of this starting solution it is now assumed that the
following forms can be written:

() , s ;
eu_ Boy* + B1y +Bay* +Bay (32)
Qo

&y) = ooyt +ouy? + oyt +oagy’ (33)

and iy and o, are taken from the starting solution:

0y = ——
I
po = —220
¥

A more general heat input of the inner surface of the cylinder is assumed :

%
U )— %—i— w4+ 0y + oyt + QP {34)

Qo Qo
Substitution of equations (32), (33) and (34) into the dimensionless forms of equations (9)
and (10) with the aid of equation (A.3a) of Ref. [6] and expanding the error function in a
power series and by equating coefficients of like terms, all terms in the equations can be
accounted for.

2.
Bo = —‘bu
T

2
oy = 3q[V+ b11:l

e[S

oy = 2q(611"|'5 B1)

8 2 K
B2 = 'ﬁ[mbnao—\/(n d)ﬁl+alb10 + bzz:l

v [2)]

Bs = ig[lnﬂo% i\/(ﬂKd)ﬂz +byox; +b21“0‘“\/(%)/300€1—\/(%)ﬁﬂoJ

111 3
0132—[“\/(K)0!1/30+ doﬂo+2\/€lo;2—"ﬂa+ Kaﬂ1+Q+C10“1+622]

Oy =

3q) 2
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The final temperature distribution in the hollow cylinder for the case of y > 0 can be
written with the aid of equation (A.3a) of Ref. [6] as
R-1

* \/n : +1p-| P (p+1)/2
(R, y) =0 (R’yH'E Y 22*r §+1 Bo-1y erfcd—r——

Ky

3. RESULTS AND REMARKS

Results are given for two different materials with their physical constants and related

dimensionless parameters given in Table 1.
Curves showing the motion of the advancing inner surface are computed from equation

(33), with respect to &(y) and y, and are presented in Figs. 3 and 4.

% (v)
DIMENSIONLESS TIME y ._:_ -1
m
DIMENSIONLESS POSITION OF THE
INNER BOUNDARY ¥ (y) --ﬂ-at-)'
INNER RADIUS  a
.02
q
.—b_- ]-2
m
.01
.00 |

.02 .05 .10 .15 .20 .25 y
F1G. 3. Advancing inner boundary for ice.
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TaBLE |. MATERIALS CONSTANTS [§]

lee Lead
Density (g./cm?) 0-998 1134
Latent heat (cal/g) 7971 6.3
Specific heat {cal/g/°C) 1-008 0-031
Thermal conductivity {cal/cm/°C} 0-004 0083
Diffusivity {cm?/sce) 000397 02135
1.0 100 100
1, {sec} 13070 38692
i 5866 3590
gy/m {2 i
m 0-043 0179
K, 0-0058 0-101
a{cm} 30 30
b {cm) 90 90
Ca 0-311 1-542

The temperature distributions in the vicinity of the inner boundary are plotted for
equation (35) for several values of time and are presented in Figs. 5 and 6.

Remarks

I. The starting solution of the position of the advancing boundary can be computed
from equation (13). This is written in the general dimensionless form:

) = ety

where ¢; and ¢, are constants and the minus sign of ¢, is due to the curvature of the
cylinder. This expression can be approximated for small values of y, such as v — & by
Lim&y) =~ ¢;y° e« L
ye
For the limiting case, the temperature distribution in the hollow cylinder is very close to
that of the starting solution of the finite slab case given in equation (32) of Ref. [6] by Boley.
Another way to obtain the slab equations from equations (19) and (10) is to obtain their
limiting values as » and a approach infinity.

2. In the temperature distribution, Figs. 5 and 6, the value 0 = |-0 corresponds to the
position of the advancing boundary. When the position of the advancing boundary, as
predicted by these temperature distribution curves, is compared to that position predicted
by equation (33) (Figs. 3 and 4) the results show a good agreement up to y = 0-2. The
results show some discrepancy for y > 0-2.
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FiG. 4. Advancing inner boundary for lead.
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Fi;. 5. Temperature distribution after melting for ice.
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FiG. 6. Temperature distribution after melting for lead.
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AoctpakT—Wcnone3yercs, BbiBeACHHbIH boredem, ""MeTOA BioXeHMs |, JUl CayHas TYCTORO HMIMHADA
C YMEHbLIAIOUIMMCST BHYTPEHHbBIM KPaeM, ¢ LEALK [HONYYEHHs OOUIEro PELUCHUS B HAYATBHOR (epuo
BPEMEHHM M [ KOTOPOTO nepuona BpemeHu. s jibga M CBUHLA NMOJIYYAIOTCS YUC/ICHHBIC PE3YNLTATLHE,
ONpeAeTAtoLIMe ABWKEHHE YMEHBIIANOLIErOCs KPAf W PACOpeacsicHde TCMIEepaTypbl B COcCencrTse
ABWXYUIEHrocst Kpas.



